20th Jul 2014
Photosynthesis: Properties of Light and Chlorophyll
A while back, we talked about how organisms fall into different categories based on what food they eat and how they get it. Humans, for example, are heterotrophs because they get their energy from organic compounds that they didn’t make themselves—another organism did. Autotrophs, however, have special mechanisms to transform energy from the environment into a kind of energy that they can consume. Heterotrophs rely on autotrophs to make their food for them; they’re like the base of the foodchain, supporting everything else.
You’ve probably guessed what kind of autotrophs I’m talking about: plants.
Photosynthesis is the process plants use to convert light energy from the sun into chemical energy that we use in cellular respiration—glucose! Think of a plant’s leaves as solar collector, letting in light, water, and carbon dioxide: the three key ingredients for the photosynthetic process. These are allowed in through little passageways or holes called stomata. Oxygen is produced as a byproduct and is shuttled out via the same route. When the stomata are open, they can also allow the leaf to lose water vapor to the atmosphere—so to prevent plants drying out, the stomata are flanked by guard cells, which control when they open or close.
The leaves of a plant are filled with photosynthetic cells that contain chloroplast, the organelle where photosynthesis takes place. Chloroplasts are filled with stacked-up thylakoid membranes, which contain chlorophyll—pigments used in photosynthesis.

These chlorophyll pigments are actually contained within two light-harvesting protein complexes embedded in the membrane, called photosystem I and photosystem II. Their goal is to capture and pass on light energy. Just so you know, photosystem II is used first and photosystem I is used second; they’re only named I and II because that’s the order they were discovered.
To understand how we can get energy from light, we have to understand a bit about light itself. You know when you pass light through a prism and it’s separated into different colours? Each colour represents a different wavelength of light: red is the longest and violet is the shortest. Colours with shorter wavelengths are more energetic, so, for example, X-Rays and UV light have shorter wavelengths than visible light, which are in turn shorter than radio waves.

When light interacts with matter, it can be either reflected, transmitted, or absorbed. A pigment is a substance that absorbs light. Pigments are usually only good at absorbing only certain wavelengths of light. Black is good at absorbing all visible light and white isn’t—it mostly reflects colours back. There are two chlorophyll pigments (called chlorophyll a, which is the primary pigment, and chlorophyll b) and they’re are good at absorbing most wavelengths of visible light except for green—they reflect green back, which is why most plants are green. Chlorophyll a is most efficient at absorbing red light while chlorophyll b is most efficient at absorbing blue light.

There are also a couple of “accessory pigments” called carotenoids (like xanthophyll and carotene), which help pick up the wavelengths that chlorophyll doesn’t, and also helps protect them from damaging wavelengths.
Photosynthesis depends on chlorophyll capturing light energy, as we’ll see in the next article.
Cool background fact: photosynthesis most likely originated in the infolded regions of the membrane in ancient bacteria. In photosynthetic bacteria today, their membranes are folded in such a way as to act like the theylakoid membranes (remember that bacteria are prokaryotes and don’t have organelles).
Body images sourced from Wikimedia Commons

Photosynthesis: Properties of Light and Chlorophyll

A while back, we talked about how organisms fall into different categories based on what food they eat and how they get it. Humans, for example, are heterotrophs because they get their energy from organic compounds that they didn’t make themselves—another organism did. Autotrophs, however, have special mechanisms to transform energy from the environment into a kind of energy that they can consume. Heterotrophs rely on autotrophs to make their food for them; they’re like the base of the foodchain, supporting everything else.

You’ve probably guessed what kind of autotrophs I’m talking about: plants.

Photosynthesis is the process plants use to convert light energy from the sun into chemical energy that we use in cellular respiration—glucose! Think of a plant’s leaves as solar collector, letting in light, water, and carbon dioxide: the three key ingredients for the photosynthetic process. These are allowed in through little passageways or holes called stomata. Oxygen is produced as a byproduct and is shuttled out via the same route. When the stomata are open, they can also allow the leaf to lose water vapor to the atmosphere—so to prevent plants drying out, the stomata are flanked by guard cells, which control when they open or close.

The leaves of a plant are filled with photosynthetic cells that contain chloroplast, the organelle where photosynthesis takes place. Chloroplasts are filled with stacked-up thylakoid membranes, which contain chlorophyll—pigments used in photosynthesis.

image

These chlorophyll pigments are actually contained within two light-harvesting protein complexes embedded in the membrane, called photosystem I and photosystem II. Their goal is to capture and pass on light energy. Just so you know, photosystem II is used first and photosystem I is used second; they’re only named I and II because that’s the order they were discovered.

To understand how we can get energy from light, we have to understand a bit about light itself. You know when you pass light through a prism and it’s separated into different colours? Each colour represents a different wavelength of light: red is the longest and violet is the shortest. Colours with shorter wavelengths are more energetic, so, for example, X-Rays and UV light have shorter wavelengths than visible light, which are in turn shorter than radio waves.

image

When light interacts with matter, it can be either reflected, transmitted, or absorbed. A pigment is a substance that absorbs light. Pigments are usually only good at absorbing only certain wavelengths of light. Black is good at absorbing all visible light and white isn’t—it mostly reflects colours back. There are two chlorophyll pigments (called chlorophyll a, which is the primary pigment, and chlorophyll b) and they’re are good at absorbing most wavelengths of visible light except for green—they reflect green back, which is why most plants are green. Chlorophyll a is most efficient at absorbing red light while chlorophyll b is most efficient at absorbing blue light.

image

There are also a couple of “accessory pigments” called carotenoids (like xanthophyll and carotene), which help pick up the wavelengths that chlorophyll doesn’t, and also helps protect them from damaging wavelengths.

Photosynthesis depends on chlorophyll capturing light energy, as we’ll see in the next article.

Cool background fact: photosynthesis most likely originated in the infolded regions of the membrane in ancient bacteria. In photosynthetic bacteria today, their membranes are folded in such a way as to act like the theylakoid membranes (remember that bacteria are prokaryotes and don’t have organelles).

Body images sourced from Wikimedia Commons

This post has 311 notes
  1. deoxyribonucleoprotein reblogged this from sciencesoup
  2. stage-diving-dalai-lama reblogged this from sciencesoup
  3. katnissinherweddingdress reblogged this from woahstarstuff
  4. dr-nicoletta reblogged this from sciencesoup
  5. ericadominguez reblogged this from sciencesoup
  6. speculative-evolution reblogged this from sciencesoup
  7. friendwbenefit reblogged this from sciencesoup
  8. missbieber-universe reblogged this from sciencesoup
  9. methimaz0le reblogged this from sciencesoup
  10. sciencenebula reblogged this from sciencesoup
  11. geminisduality reblogged this from sciencesoup
  12. discoveroceanography reblogged this from polymathmadness
  13. jmkfan reblogged this from thegingermastah
  14. shoeboxer1992 reblogged this from sciencesoup
  15. thegingermastah reblogged this from sciencesoup
  16. five-seconds-of-bruh-mer reblogged this from sciencesoup
  17. science-worm reblogged this from sciencesoup
  18. mrmadeleinefly reblogged this from sciencesoup
  19. hawkw reblogged this from sciencesoup
  20. gendarborbala reblogged this from sciencesoup